Нови прозрения в основите на квантовата механика


от

Метаматериал с почти нулев индекс

Илюстрация на метаматериал с почти нулев индекс показва, че когато светлината преминава през нея, тя се движи в постоянна фаза. Кредит: Second Bay Studios/Harvard SEAS

Метаматериалите с нулев индекс предлагат нови прозрения в основите на квантовата механика.

Във физиката, както и в живота, винаги е добре да гледате на нещата от различни гледни точки.

От зората на квантовата физика начинът, по който светлината се движи и взаимодейства с материята около нея, се описва и разбира предимно математически през призмата на нейната енергия. Макс Планк използва енергията, за да обясни как светлината се излъчва от нагрети обекти през 1900 г., основополагащо изследване в основата на квантовата механика. Алберт Айнщайн използва енергия, когато въвежда концепцията за фотона през 1905 г.

Но светлината има друго, също толкова важно качество, известно като инерция. И както се оказва, когато намалите инерцията, светлината започва да се държи по наистина интересни начини.

Международен екип от физици преразглежда основите на квантовата физика от гледна точка на импулса и изследва какво се случва, когато импулсът на светлината бъде намален до нула. Изследователите се ръководят от Михаел Лобет, научен сътрудник в Харвардското училище по инженерство и приложни науки Джон А. Полсън (SEAS) и Ерик Мазур, професор по физика и приложна физика на Балкански в SEAS,

Изследването е публикувано в списанието Наука и приложения за естествената светлина на 25 април 2022г.

Всеки обект с маса и скорост има инерция – от атоми през куршуми до астероиди – и импулсът може да се прехвърля от един обект на друг. Пистолетът се отдръпва, когато е изстрелян куршум, тъй като инерцията на куршума се прехвърля към пистолета. В микроскопичен мащаб, an[{” attribute=””>atom recoils when it emits light because of the acquired momentum of the photon. Atomic recoil, first described by Einstein when he was writing the quantum theory of radiation, is a fundamental phenomenon that governs light emission.

But a century after Planck and Einstein, a new class of metamaterials is raising questions regarding these fundamental phenomena. These metamaterials have a refractive index close to zero, meaning that when light travels through them, it doesn’t travel like a wave in phases of crests and troughs. Instead, the wave is stretched out to infinity, creating a constant phase. When that happens, many of the typical processes of quantum mechanics disappear, including atomic recoil.

Why? It all goes back to momentum. In these so-called near-zero index materials, the wave momentum of light becomes zero and when the wave momentum is zero, odd things happen.

“As physicists, it’s a dream to follow in the footsteps of giants like Einstein and push their ideas further. We hope that we can provide a new tool that physicists can use and a new perspective, which might help us understand these fundamental processes and develop new applications.”

Michaël Lobet, Research Associate, SEAS

“Fundamental radiative processes are inhibited in three dimensional near-zero index materials,” says Lobet, who is currently a lecturer at the University of Namur in Belgium. “We realized that the momentum recoil of an atom is forbidden in near-zero index materials and that no momentum transfer is allowed between the electromagnetic field and the atom.”

If breaking one of Einstein’s rules wasn’t enough, the researchers also broke perhaps the most well-known experiment in quantum physics — Young’s double-slit experiment. This experiment is used in classrooms across the globe to demonstrate the particle-wave duality in quantum physics — showing that light can display characteristics of both waves and particles.

In a typical material, light passing through two slits produces two coherent sources of waves that interfere to form a bright spot in the center of the screen with a pattern of light and dark fringes on either side, known as diffraction fringes.

Light Double Slit Experiment

In the double slit experiment, light passing through two slits produces two coherent sources of waves that interfere to form a bright spot in the center of the screen with a pattern of light and dark fringes on either side, known as diffraction fringes. Credit: Harvard John A. Paulson School of Engineering and Applied Sciences

“When we modeled and numerically computed Young’s double-slit experiment, it turned out that the diffraction fringes vanished when the refractive index was lowered,” said co-author Larissa Vertchenko, of the Technical University of Denmark.

“As it can be seen, this work interrogates fundamental laws of quantum mechanics and probes the limits of wave-corpuscle duality,” said co-author Iñigo Liberal, of the Public University of Navarre in Pamplona, Spain.

While some fundamental processes are inhibited in near-zero refractive index materials, others are enhanced. Take another famous quantum phenomenon — Heisenberg’s uncertainty principle, more accurately known in physics as the Heisenberg inequality. This principle states that you cannot know both the position and speed of a particle with perfect

“These new theoretical results shed new light on near-zero refractive index photonics from a momentum perspective,” said Mazur. “It provides insights into the understanding of light-matter interactions in systems with a low- refraction index, which can be useful for lasing and quantum optics applications.”

The research could also shed light on other applications, including

Reference: “Momentum considerations inside near-zero index materials” by Michaël Lobet, Iñigo Liberal, Larissa Vertchenko, Andrei V. Lavrinenko, Nader Engheta and Eric Mazur, 25 April 2022, Light: Science & Applications.
DOI: 10.1038/s41377-022-00790-z